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Steps towards improving the security of chaotic encryption

Blair Fraser,* Pei Yu,† and Turab Lookman‡

Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7
~Received 23 January 2002; published 19 July 2002!

We present a method in which a chaotic signal is used to mask a message securely. It depends on separating
the two tasks of synchronizing the chaotic oscillators and encrypting the message. A sporadic drive together
with a functionf of the ciphertext and response system variables is used to make extraction difficult. We give
a choice off that makes the method similar to a one-time pad, with pseudorandom numbers provided by the
chaos.

DOI: 10.1103/PhysRevE.66.017202 PACS number~s!: 05.45.2a, 81.30.Kf, 64.70.Kb, 61.72.Dd
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I. INTRODUCTION

It is well known that two identical low dimensional sys
tems exhibiting chaotic motion may be synchronized by g
ing one system partial information about the state of
other. Since this chaos is unpredictable, the complete sta
the chaotic oscillator is difficult to predict or reproduce wit
out an identical nonlinear system. This makes chaos a g
candidate for masking a message. Pecora and Carrol@1# no-
ticed that, by adding a message with a small amplitude to
chaos, the signal is still close enough to the exact cha
mask to allow the dynamics of the two systems to synch
nize, if they share all the same parameters in the equation
which become the private keys to the method. It is assum
in this method that the nonlinear system in use is known
an intruder, as is the function that combines the chaotic m
with the message~addition in this case!. This must be re-
tained in any modifications to the method. By the use of s
synchronization, we can reproduce the mask at the recei
end. Simply subtracting this reproduced mask from the
ceived encrypted message leaves the original plaintext m
sage. We note that many other popular methods of us
chaos to encrypt a message exist@2,4#, including shift key-
ing, which are not addressed in this paper.

There has been much interest in using synchronized
dimensional chaos for data encryption. The encrypt
method is reasonably fast, simple to implement, and has b
assumed secure. However, several security flaws have
cently become apparent that allow the underlying messag
be revealed without a knowledge of the private keys or e
of the nonlinear system itself in some cases. Increasing
dimension of the chaos does not appear to be the wa
improve security@3#.

The addition of the message to chaos changes the re
map of the chaotic signal, as may be seen by plott
maxima and minima of the masked message. If the re
map is close to being one dimensional, then the message
be detected as deviations to this quasi-one-dimensiona
This is the case in the return map of the Lorenz equation
used in@1#, as well as many other equations. For a discuss
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of how to extract the plaintext message without keys, see@5#.
The difficulty can be repaired adequately as shown in@6#, by
discretizing the signal and the message, thus blurring
return map, and preventing the message from being ea
decrypted with simple signal processing techniques. T
method improves security even when using systems that
hibit a low dimensional chaotic trajectory, as an intruder s
only discrete points on the attractor. The aim of this work
to propose methods that can encrypt messages more sec
by destroying more information about the message that m
have otherwise been gathered from the cyphertext. We c
sider a digital implementation where the systems are sol
numerically. The chaos is used to create a pseudorandom
stream and this bit stream is used as a mask for the mess
After introducing the notation in Sec. II, we discuss in Se
III the desirable elements of a secure method and show
the proposed method overcomes flaws in previous
proaches. Transmission errors are considered in Sec. IV
we highlight possible sources of weakness in Sec. V. In S
VI we briefly discuss how this method may be used in
analog system, and some practical hurdles in this implem
tation.

II. NOTATION

For ease of discussion, we assume that the system
three variables. The proposed method is general enoug
use on any synchronizable chaotic system, continuous or
crete; however, in this paper we will often use the Lore
system as an example as it is the system that appears mo
the study of encryption with chaotic ordinary differenti
equations. We write the generic system as

ẋ5g1~x,y,z!, ẏ5g2~x,y,z!, ż5g3~x,y,z!.

The drive system will be denotedd, and the variables of
the drive system will be denoteddx , dy , anddz . Similarly,
the response system will be calledr , and its independen
variablesr x , r y , and r z . We assume that thex variable is
being used as a drive, i.e.,r x is being driven bydx . The
plaintext message will be denoted bym, and the ciphertext
message byc.

III. REPAIRING THE FLAWS

The security holes in chaotic encryption rely on how si
ply the chaos and message are combined to produce th
©2002 The American Physical Society02-1
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phertext. Conventionally, the messagem is reduced in ampli-
tude to be much quieter than the chaotic maskdx ; the two
are then superimposed to givec. We are forced to use such
simple function of the mask and message because we
the combinationm anddx to look very similar todx so that it
can be used to synchronize the response system with
drive system. We could imagine a much more complica
function of m and dx , denoted byf (m,dx), that looks like
neither the message nor the mask, and would be much m
complicated to cryptanalyze. All useful information abo
the message contained in the return map could be comple
scrambled by a sufficiently complex combination. In fact,
could even imagine combining the message with more t
one mask from the transmitter, supplied by more than
variable of the nonlinear system. For example, in our sys
of three dynamical variables we could use a function of al
the three variables and the messagef (m,dx ,dy ,dz) to create
a complicated ciphertext message. The problem is then u
this as a drive. We mention again that bothf and the nonlin-
ear system are assumed to be known to an intruder. The
to the method will be parameters in the differential equ
tions, analogous to the parameterss, r, andb used in@1#, and
only these keys are unknown to an intruder.

The information contained in the signal that will be us
for the drive is potentially useful to an intruder. Howeve
scrambling this information to make it more difficult for a
intruder to use also makes it impossible for the respo
system to use as a drive signal, destroying any hope of
chronizing the oscillators.

To allow the use of this complicated function of the va
ables and the message, we must appreciate that there ar
tasks here. One is to synchronize the two oscillators to cr
identical masks, in a robust way, and the other is to
masks created by the chaos to encode and transmit
Separating these tasks will allow us to use the chaotic ma
in any way we desire, and still synchronize the two syste
These changes to the method allow us increase secu
Based on the results in@6#, we can use a sporadic drive@7# to
accomplish this separation of tasks. We consider no mes
here, just the synchronization of two identical oscillators. W
can synchronize two oscillators if we send a short drive pu
everyTn time units, so long asTn is shorter than some max
mum timeTH . The timeTH will be determined by the choice
of oscillator used. In the Lorenz system,TH was found to be
'0.31 if thex variable is used as a drive signal@6#. During
the time the drive is off, nonzero errors will grow until th
next drive pulse. When the method is implemented digita
once the chaos is synchronized to machine precision, onl
errors will cause the oscillators to come out of synchroni
tion.

We now consider the creation of the transmitted mess
as a sequence of packets, where a packet contains a he
and some encrypted data. The header contains a single
of the sporadic drive signal. In our example, the header
be dx at regularly spaced intervalsTn . The header is fed
straight into the drive of the response system to keep the
oscillators synchronized. After the header, the encrypted
are sent. They are not fed as a drive to the response sys
but instead are sent to the inverse off, along withr x , r y , and
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r z . If the two oscillators are synchronized thenm can be
recovered throughf 21(c,r x ,r y ,r z). Following this is an-
other packet, containing a header, and some encrypted
which is dealt with in the same manner.

As the synchronization of the oscillators and the encr
tion of the message are separated, we have complete free
in how we choosef, as long asf is invertible. We can choose
f in such a way that small deviations in the keys beco
more sensitive. In conventional chaotic encryption, keys t
are not identical but are very close can still be used to s
chronize the two systems very well, thus reducing the k
space of the encryption. We will not alter this; close ke
will still synchronize the systems closely. Instead, we w
constructf to be very sensitive to small changes in the ch
otic inputsdx , dy , anddz so that close synchronization wi
not be good enough to decrypt the message. There are m
ways to create such anf. The point of this encryption is tha
we have complete freedom in choosingf. Here we will dis-
cuss one suchf that can be used to give arbitrarily sensitiv
keys.

The way we constructf will be to take the least significan
digits of dx , dy , anddz to create three bit masks. The wa
we have chosen to do this is with the function

maskx5 b~sdx2 bsdxc !~2* INT–MAX !c. ~1!

Similar functions usingdy anddz create masky and maskz .
Heres is a number used to control how sensitive the funct
is to the chaotic inputs, and 2* INT–MAX is the maximum
unsigned integer that can be represented by the comp
This results in three integer sized bit masks. For example
dx527.183 948 475 701, we are taking the least signific
digits of dx . If s5106, we take 475 701 and create a b
mask out of this. It is the most significant digits of the cha
that are easily predictable. We dispose of these most sig
cant digits, and use the digits that are sensitive when c
but not exact keys are used. These bits are also sensitiv
numerical error, which will be dealt with later. Once maskx ,
masky , and maskz are created, aXOR operation is performed
with the message to create the ciphertext

c5m% maskx% masky% maskz . ~2!

If the receiver can reproduce maskx , masky , and maskz from
r x , r y , andr z , then the message may be recovered by aXOR

operation on these masks with the received ciphertextc,

m5c% maskx% masky% maskz . ~3!

Notice that an intruder must be able to reproducedx , dy ,
anddz down to the sensitivity determined bys to be able to
read the message. This differs from conventional chaos
cryption, which only requires that the intruder work withdx
from a ciphertext signal that looksalmost like dx . In our
method, even if the intruder could reproducedx exactly, the
message could not be decrypted without knowingdy anddz
as well. We show the results of a correct decryption, and
attempted decryption with close but not exact keys~within
2%!, in Fig. 1. We emphasize that this choice off is only an
example. The choice of this function is completely arbitra
2-2
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We have used this function because of its ease of use.
not the best choice, because the first bits in the mask are
secure than the later bits since they come from more sig
cant digits in the chaotic variables. We could do better
subjecting this mask to a hash function to make the secu
across bits uniform.

This particular choice off makes the method look ver
similar to a one-time pad, with pseudorandom numbers p
vided by the chaos. A one-time pad performs aXOR operation
on a message withreal random numbers, and is provab
secure. The security of a one-time pad relies on the m
being truly random, and the pad being shared byonly the
transmitter and receiver. The mask in our method is not tr
random, but if it displays the properties of random numb
well enough and is very hard to reproduce with the inform
tion freely available, then the plaintext will be secure to a
reasonable amount of computing power. Since the pa
reproduced from synchronization data, the pad does not n
to be shared by the transmitter and receiver before the se
communication is to occur. Note that the actual pad crea
by the transmitter depends on the random initial conditio
chosen for the oscillator, which should be different eve
time to ensure the pad is only used once. The receiver d
not need to know these random initial conditions, for wh
the communication is initialized several ‘‘handshake’’ hea
ers are sent to synchronize both systems before any dat
sent. During this handshake, even close initial conditio
will diverge, ensuring the uniqueness of every pad by a
reasonable standards.~The pad will not be unique since th
computer can only represent a finite number of initial con
tions; however, this finite number is large enough that
intruder should never see a pad repeated.!

IV. ROBUSTNESS TO BIT ERRORS

We consider burst noise that affects one or more bits
packet, either in the data or in the header. If there are er
in the encrypted data of a packet, then this packet will
destroyed. The masks will be reproduced correctly at
receiver’s end, but if the input ciphertext contains erro
then the output off 21 will also contain errors. Since th

FIG. 1. Decryption of an oscillating bit stream with exact ke
~top!, and close but not exact keys~bottom!.
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oscillators are still synchronized, the next packet will not
destroyed by this bit error. A far more serious error is
error in the packet header. If the response system is fed f
information as a drive, then the two oscillators fall out
synchronization. The masks cannot be reproduced from
unsynchronized response system, and the packet is
stroyed. In addition to this, all packets are destroyed until
two oscillators come back into synchrony. We can see thi
Fig. 2, where the Lorenz system is used; approximately
kilobytes are lost before the oscillators are again synch
nized. This length of time depends on both the oscilla
used and the value ofs. If we sets such that we demand th
oscillators be in synchrony right down to machine precisio
then the recovery time is longer. This is a trade-off agai
the sensitivity of the keys. Demanding the masks match
actly down to the last bit makes the keys incredibly sensit
and thus increases the available keyspace. However, it
increases the recovery time in the event of an error in
header. But, in any case, only a finite number of packets
destroyed by any errors in transmission.

V. ADVANTAGES, DRAWBACKS,
AND POTENTIAL FLAWS

Encrypting a message in this way is simply using a ps
dorandom number generator to create a one-time pad.
security of this type of encryption lies wholly in the rando
number generator. We have changed how the random n
bers are generated. By doing so, we gain an important
vantage. In many pseudorandom number generators, if
chronization is lost, then it can never be regained in a sec
manner. Each random number depends on a small numb
previous numbers only, so the first random numbers,
seeds, determine all succeeding random numbers. If sync
nization is lost, one cannot simply have the transmitter s
all the state information of its random number generator
that the receiver can resynchronize. This would allow
intruder to synchronize as well. Thus all bits of the messa
after a synchronization error are lost. By using synchroniz
chaos, we send some resynchronization information to
response system in each header that allows it to resync

FIG. 2. Error in each bit of recovered message when a bit e
occurs in header at bit 142400.
2-3



re
n-

ti
u
ll
ou

y
a
b
r
no
pr

th
b

um

am
ju
se

o

a
iz
a
io

in
st

a-
enz
-
cks
ieve
This
om

gest
ible
is
e at-

on-
eys
f a

reak
h
est,
an-
im
ffi-

ob-
not

d is
of

nd
y

ust
ing
be-

tal
is,
s.

BRIEF REPORTS PHYSICAL REVIEW E66, 017202 ~2002!
nize after loosing a finite number of bits. It is a much mo
difficult task for an intruder to use this synchronization i
formation. The intruder must reproducedx , dy , anddz ex-
actly from discrete pulses ofdx , or, alternatively, reproduce
the private keys from this same information. The chao
equations are not fixed in this method, so the intruder m
find a general way to do this, one that will work on a
synchronizable low dimensional chaotic systems, continu
or discrete.

One drawback to this method is that the sensitivity to ke
also creates sensitivity to numerical error. The systems
chaotic, so large numerical errors will occur, but if we can
assured that exactly the same numerical error will occu
both ends, there is no problem. Unfortunately, this is
always so easy to ensure. Machines that have different
cisions for floating point numbers will not decrypt ifs is set
to be very sensitive. This amounts to standardizing how
floating point numbers are used in the method. This may
done by using a language that determines floating point n
bers across platforms, such asJAVA, or by standardizing the
hardware that executes the encryption. In addition, the s
numerical algorithms must be used at both ends, but this
amounts to standardizing the software, and does not po
problem. We should also note that the headers increase
size of the message. This increase will vary, depending
the nonlinear system used, by its value ofTH . Obviously a
large TH allows a lot of encrypted data to be sent after
synchronization header and will still be able to resynchron
after an error. The Lorenz system allows transmission of
proximately 36 bytes of data after 8 bytes of synchronizat
information.

VI. CONCLUSION

We presented a private key method of encryption us
synchronized chaos. We assumed that the nonlinear sy
01720
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and the functionf are known to an intruder. The scalar p
rameters of the nonlinear equations, in the case of the Lor
systemr, b, ands, remain unknown to the intruder and be
come the private keys to the method. The return map atta
against the conventional method are repaired, and we bel
as few as possible new potential attacks are opened.
method is part chaos encryption and part pseudorand
number one-time pad encryption. We have kept the stron
advantages of both methods, while losing as little as poss
in the combination of the two. The security of this method
not a closed matter. The easiest attacks to see are thos
tacking the random numbers, or gathering information c
tained in the headers and trying to reproduce either the k
or the mask. However, discrete points on the trajectory o
chaotic attractor have been used in@6# and found to be secure
against the simple signal processing techniques used to b
chaotic encryption as in@5#. Further, we have shown throug
simple tests of randomness, including Knuth’s spectral t
and a test of the dimensionality of the structure of the r
dom numbers, that the random numbers will not fall vict
to the simplest of attacks. However, this analysis is insu
cient to state that the random numbers arecryptographically
secure. We do not address if enough information can be
tained from the headers to attack the message, but we do
see any simple ways to achieve this. Before this metho
implemented and used for secure communication, both
these pointsmustbe analyzed in a more comprehensive a
in depth study@8#. Finally, we mention that this method ma
also be applied to analog communications by creatingf to be
a complex analog function. However, since the receiver m
know when it is receiving a header and when it is receiv
encrypted data, there must be synchronized switching
tween the transmitter and receiver. This is trivial in a digi
system, but not as trivial in an analog implementation. It
however, a solved problem used in all computer network
s.
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